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l. INTRODUCTION

Let #, denote the collection of real algebraic polynomials of degree <n,
and #F* that subcollection of #, consisting of the monic polynomials of
degree <n. Let # denote the collection of real weight functions, w, such
that: w(x)>0 for all xe#, w’ is continuous on 4, and lim[x"w(x)]=
lim[x"w'(x)]=0as |x] = o, n=1, 2, ... All norms considered in this paper
are sup norms on A (ie., || fl=sup{|f(x):xe#!) Foreach n=1,2, .,
define

2T g e sap L2
pepx hpll

/., = sup ‘
! pe.Pr ”"p"

By standard arguments it can be shown that /, and g, are finitc and
that there exist polynomials p, ge #* for which |wp'll/|wp| =%, and
lOvg)l/Iwgll = u,. We will refer to such polynomials p or ¢ as extremal
polynomials for A, or p,, respectively. Clearly the following inequalities of
Markov type hold for all pe #,:

lwp'll <4, wpll and  [(wp) I < p, [epll.

Moreover £, and p, are the best possible constants in these inequalities.
Estimates of 4, and u, have been determined for various special weight
functions (cf. [3, 6, 7]).

We also introduce the monic polynomials, T, of cxact degree n, which
are extremal in the sense that w7, || =inf{|w(x)[x"—q(x)]l:qe2, |
Since {x*w(x):k=0,1,..,n—1} is a Haar system on #, it is well known
(cf. [1]) that T, is uniquely characterized by the fact that w7, has an
alternant of size n+ 1. (An alternant of size N for a function, f, is a set
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of N points, x, < --- <x,. such that |f(x)=|/fl. A=1,..N and
flxi )= —flxh k=1,... N—1. A maximal alternant for / is an alter-
nant for f whose size is as large as possible.) It is known [4] that T, is also
extremal in the sense that among all the functions, wp, p € #*, the one with
the largest (or smallest) e-point is wT,. (An e-point of a function, /. is a
point, x¢, such that |f{xy)l = /I.) In other words, if ¢, and b, denote the
smallest an largest e-points of w7, then for any pe2, |wpl=
max{|w(x) p(x):a,<x<bh,}. Itis clear that £, u,. T,. u,. and b, depend
on the weight function, w, but for simplicity our notations will not indicate
this dependency.
The purpose of this paper is to prove

THEOREM 1. Let we ¥ and suppose pe #¥, n=2, is unyv extremal for
w,,. Then

(1) A maximal alternant for wp is of size n or n+ 1.

(i) If w'iw is decreasing on A then there is exactly one maximal alter-
nant for wp. Moreover if this maximal alternant, x| < --- < x,, is of size n
(ie, if p#T,) then (wo) (ty) =0, where w(x)=(x—x,)---(x —x,) and 1, is
any e-point of (wp)'.

THEOREM 2. Let we W and suppose pe #¥ is any extremal for 7,

(1) Ifn=1then p=T,.
(11} If n=2 then a maximal alternant for wp is of size n or n+ 1.
(1) If w'iw is decreasing on A then there is exactly one maximal
alternant for wp. Moreover if this maximal alternant, x, < --- < Xx,, is of size
n{ie,if p#T,) then w'(t;)=0, where w(x)=(x—x,)---(x—x,) and t, Is
any e-point of wp'.

THEOREM 3. If wi(x)=exp(— X"} and pe P¥ is anv extremal for u
nxzl1, then p=T, ,o0r p=T,, where T, :=1.

n»

These theorems will be proved in Section 3, but first we need some
preliminary results.

2. LEMMAS

LEmMMA 1. Suppose:

(1) f#0 and g are real functions continuous on [ua, b],
(i) M=max, .., |f(x) and § ={xela, b]: |f(x)i=M},
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(ill)  there exists a set .o/ = & such that o/ is open relative to [a, b] and
f(x) g(x)=0 for each xe <.
Then for sufficiently small positive ¢, max,, . .., |f(x)—eg{x)| <M.

It should be noted that Lemma 1 is a slight variation of a more standard
result which states that the inequality in the conclusion is strict if, instead
of (iii), it is assumed that f(x)g(x)>0 for each xe&. The proof of this
lemma is routine and will therefore be omitted.

LEMMA 2. Suppose:
(1) Xy, ...x, are n distinct real numbers,
(1) ¥y s ¥, dre real numbers (not necessarily distinet),
(i)  L: 2 — A is a linear functional,
(iv) o(x)=(x—x,)-(x—x,) and Lw #0.
Then there exists a unique polvnomial, ge.#,, such that ¢(x,)= 1.,

k=1, ..nand Lg= v, , .

Proof. If qg(x)=c¢y+c,x+ - +¢,x" then Lg=cy(LlY+c,(Lx)+
<o 4 ¢, (Lx"), where Lx* denotes the real number obtained by letting L act
on the monomial, x*. Therefore the coefficients, ¢,, must satisfy the follow-
ing (n+1)x (n+ 1} linear system of equations.

Co O X) +o6X] 4 N =

4 e - . (2.1)
Co + ¢y, + (3'\n + o+ (71'\/1 = Y,

col L)+ e (Lx)y+es(Lx™)y 4+ -+ e (LX) = v, ..

In order to show that this system is solvable we first consider the function,
/. defined by

I X X3 Xy
(y) =
i
TTh e "
2 H
I x x X

Expanding this determinant we obtain that f(x)=A4,+ 4, x+ - + A4,x",
where A4, is the cofactor of the entry, x*, in the last row. In particular, 4, is
the Vandermonde detrminant for the points x,,..., x,, and so 4, # 0. Since
fe#, and f has zeros at x,,..,x,, we obtain that f(x)=4,w(x). It
follows that A4, (Lw)=Lf=AyL1)+ A, (Lx)+ --- + A,(Lx"). This last
sum is the expansion by cofactors of the last row for the determinant of the
coefficient matrix in (2.1). Therefore (2.1) is uniquely solvable since Lw # 0.
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LeMMa 3. Let we # and suppose pe 2} is extremal for u,, n>= 1. lf wp
has exactly n e-points, X, < «-- <x,, and o(x)=(x—x,)---(x—x,) then
(ww) (1y) =0 whenever 1, is an e-point of (wp)'.

Proof.  Suppose to the contrary that (wp)' has an e-point, 1, such that
(ww)'(t,) #0. Applying Lemma 2 with Lf:=(wf)(r,). we obtain a
polynomial, ¢e.#,, such that g(x,)=sgn[p(x,)]. 1<k<n, and
(wq)'(ty)= —sgn[(wp)(1,)]. For sufficiently small &>0, |w(p—eg)f <
[wpl (sce remark after Lemma 1). Furthermore. [[[w(p—e¢)) || =
Howp) (20) — elwg) (1) > [(wp) (et = ' (wp)'l.  Therefore  the  ratio.
10ep)il/iwpl. would become larger if p were replaced by ¢ p — &q) for any
ce A, ¢#0. This would contradict the fact that p is extremal for p,,.

LemMMa 4. Let we # and suppose pe #¥ is extremal for 4, nz 1. If wp
has exactly n e-points, x, < -+ <X,. diud o(x)=(x—x) - (X —x,) then
W' (1Y =0 whenever 1, is an e-point of wp'.

Proof.  Suppose to the contrary that wp' has an e-point, 1,. such that
w'(ty) #0. Applying Lemma 2 with Lf := f"(¢,). and arguing in a manner
similar to the proof of Lemma 3, we would obtain a polynomial, g€ #,.
such that for sufficiently small ¢>0, [w(p—eg) |/ Iw(p—eg) >
hwp'i/Ilwpll. This would contradict the fact that p s extremal for 4,,.

LEMMA 5. Suppose we # and wiw is decreasing on A. Also suppose
pe P, has n distinct real zervos. Then there are exactly n+ 1 distinet real
numbers, where (wp)' vanishes, and so wp can have at most n+ 1 e-points.
Moreover if wp does have n+ 1 e-points then these e-points form an alternant
for wp (ie., p=cT,, ¢ #0)

Proof. Write p(x)=c(x -~ z;)---(x—2,), where -, < --- <z,. The zero

set of (wp)' is the solution set of the equation.

w'(x) ! l
=2

wlx) T

The argument that follows is easily motivated by considering the graph of
the function, #. where A(x) is the right side of (2.2). Note that / is con-
tinuous and increases from —x to x on each interval. (z,, z., )
k=1,..,n—1.So (2.2) has one solution in each of these intervals. Also
note that /1 is continuous on the interval, (— =, z,). Furthermore /4 maps
this interval onto (0, o). Therefore (2.2) must have a single solution in
{(~oc, z) unless w'(x) <0 for all xe(— o, z,). This last possibility is ruled
out since w(x)—>0 as x - — . A similar argument shows that (2.2) also
has a single solution in the interval, (z,. 2¢). Thus we have shown that the
solution set of (2.2) contains exactly n 4+ | points. Now suppose that each
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of these solutions, x, < --- <x, . Is an e-point of wp. If these e-points did
not form an alternant for wp then (wp)(x,,,)=(wp)(x,) for some &,
1 <k <n. Therefore (wp) would have a zero in {x, x, . ,). However, since
Xy X, are zeros of (wp)', this would imply that (sp)’ vanished at
more than #+ 1 points.

3. PrOOFS OF THEOREMS

Proof of Theorem 1. Let we # and suppose pe #¥ is extremal for p,,,
nz2 Let a=a, and h=b, so that for all ge.2,, |yl = max{ |w(x) ¢(x)i:
a<x<hl. Let 1, be any e-point of (wp) and let h(x)=(x —1,)". Note that
1, cannot be an e-point of wp and hence i(x) >0 whenever x i$ an e-point
of wp. We first show that wp must have both (+) points and ( — ) points.
(An ¢-point, x,, of a function, f, is designated a (+ ) point or a (— ) point
according as f{x,)=| /1 or fix,)=—|/1.) To see this suppose that wp
had only (+ ) points. Then for sufficiently small ¢ >0, [w(p—eh)| < lwpl.
Morcover, | [(p—sh)1'l = [0wp) (15) = s0vh) (1) = [ (wp) (1) = [(wp ).
Therefore the ratio, | (wp)'{|/I|wpll, would become larger if p were replaced
by ¢(p—¢h) for any ce A4, ¢ #0. However, this would contradict the fact
that p is extremal for y,. Therefore wp must have both (+) points and (—)
points. We assume that the smallest e-point of wp is a (+) point. (If this
were not the case the following argument would be modified in an obvious
way.) By following the standard proof of the Tschebyscheff Equioscillation
Theorem (cf. [2] or [S]) we can choose a finite number of points,
1, < -+ <t,, In (a, b), none of which are ¢-points of wp. so that:

[, 1,1 contains e-points of wp all of which are { + ) points,

[#. 1] contains e-points of wp all of which are (— ) points,

[1,,. ] contains e-points of wp all of which are ( + ) points

or (— ) points according as m is even or odd.

Since a maximal alternant for wp is clearly of size m+ 1, we need to
show that m+12=n Let g(x)=(1,—x) --(1,,—x) h(x). Observe that
p(x)g(x)>0 whenever x is an e-point of wp. Hence for sufficiently
small ¢ > 0, |w(p—eg)| < |wpll. Moreover, |[[w(p—eg)]| =
[(wp) (to) — e(wg) (1) = |(wp) ()] = l(wp)'|l. As before this would con-
tradict the extremal nature of p unless g¢¢.#,. Therefore deg(g)=
m+2=n+ 1. This establishes (1). To prove (i) we first note that, because
of (i}, there are only three cases to consider: (1) deg(p)=n—1 and a
maximal alternant for wp is of size n (1e., p=T, ), (2) deg{p)=n and a
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maximal alternant for wp is of size n+ 1 (1., p=T,), (3) deg(p)=n and a
maximal alternant for wp 1s of size n. In the first two cases it follows
immediately from Lemma 5 that a maximal alternant for wp consists of all
e-points of wp, and hence is unique. In the third case p has at least n— |
distinct real zeros, z,, ..., 2, ;. Since p is real there is one more real zero,
-,- Moreover if - were not distinet from z,, .., -, | then wp would change
sign at only #—2 places and so a maximal alternant would be of size
<n— 1. Therefore p has » distinct real zeros. Again Lemma 5 implies that
the »n points in a maximal alternant for wp are the only e-points of wp, and
hence this maximal alternant is unique. The remainder of (ii) follows
immediately from Lemma 3.

Proof of Theorem 2. Let we # and suppose pe #¥ is extremal for 4,
n = 1. Suppose wp had only ( + ) points. Then it is easy to see that the ratio,
wp'll/IIwpl, would become larger if p were replaced by p — ¢ for some suf-
ficiently small ¢> 0. Thercfore wp must have both (+) points and (—)
points. When n =1 this implies that p=T,. We assume hereon that n > 2.
Let a, b t,,...t,,.g and h be as described in the proof of Theorem I.
except that in the definition of A(x) we choose ¢, to be an e-point of wp'.
We also choose the 1/'s so that ¢,¢3¢,....1,). Clearly p(x)g(x)=0
whenever x is an ¢-point of wp (strict inequality might not hold since 7,
could be an e-point of wp). It is also easy to see that p(x) g(x) >0 when v
15 in a sufficiently small neighborhood of any e-point of wp. Therefore, by
Lemma 1, there exists ¢>0 so that ||w(p—eg)| <|wp|. Furthermore,
wip—eg)l = |[wlt)p'to) —eg' (13l = Intig) p'ty)l = |wp'l. The
inequality in this chain can be made strict if 1, iS not an e-point of
w{p—eg). That this is indeed the case is easily seen by noting that the
derivative of w(p—eg), evaluated at ¢,, 1s cqual to —aw(ty) g”(1y) #0.
Again the extremal nature of p requires that deg(g)=m+2>=n+1. This
establishes (i). The proof of (ii) can be obtained as in the proof of
Theorem 1, except that Lemma 4 is used instead of Lemma 3.

Proof of Theorem 3. Let w(x)=exp(—x’) and suppose pe£¥ is
extremal for u,. n> 1. First note that either deg(py=n—1 or deg(p)=n,
and if deg(p)=n—1then p=T, ,. If n=1 these statements are trivial
and if n =2 they follow from (i) of Theorem 1. From hereon we assume
that n> 1 and deg(p)=n. It remains to be shown that under these con-
ditions, p=T,. We begin by noting that p has » distinct real zeros. For
n=1 this is clear and for n=2 it was established in the proof of
Theorem 1, part (ii). By Lemma 5, (wp)’ vanishes at exactly »+ 1 points,
X, < - <X,,, and by (1) of Theorem I, at least n of these are e-points
of wp. We now claim that all the points, x,, .., x,,,, are ¢-points of wp.
To see this suppose, to the contrary, that wp had only n ¢-points. Let
w be the monic polynomial of degree n whose zeros are at the e-points
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of wp, and let x,,, 1l <m<n+1, denote that zero of (wp) which is
not an e-point of wp. Since (wp)(x)=w(x)[p'(x)—2xp(x)], it follows
that 2xp(x )—p’( X)=2(x-x,) - (x—x,, ) =2(x—x,,) o(x). Therefore
(wo)(x)=(wp)(x)/2(x,,— x) and

(X, — x)(wp)"(x )+(wp)’(x)‘

(ww)'(x)= x, =)

Clearly if 1, is an e-point of (wp)’ then (ww)'(1,) = (wp) (t4)/2(x,, — t,)* #0,
a result which contradicts Lemma 3. Therefore all of the points,
Xy, n X, .1, Mmust be e-points of wp. By Lemma 5, these e-points are an
alternate for wp, from which it follows that p=T,.

4. REMARKS

[t seems likely that the conclusion of Theorem 3 could be improved by
showing that T, | cannot be extremal for u,. This would be equivalent to
showing that u,<u,< -.-, or, more directly, by showing that
T, )i/ IwT, (wT,) > 1. This latter inequality can be
confirmed by direct computation for n= 1, 2. For this purpose we note that
To(x})=1, T,(x)=x, and T,(x)=x"—a where a is that number such that
alexpla+1)]=1.

It would also be of interest to find other weights for which T, is the
extremal polynomial for either u, or 4,,.
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