Extremal Polynomials for Weighted Markov Inequalities

R．N．Mohapatra．P．J．O｀hara．and R．S．Rodriguez
Deportment of Mathematics． Unirersitr of Central Florida，Orlando．Florida 328／6．U．S．4
Commumicated by Ored Shisha
Received July 15， 1985

1．Introdection

Let \mathscr{P}_{n} denote the collection of real algebraic polynomials of degree $\leqslant n$ ， and \mathscr{P}_{n}^{*} that subcollection of \mathscr{P}_{n} consisting of the monic polynomials of degree $\leqslant n$ ．Let $w^{\text {d }}$ denote the collection of real weight functions，w ，such that：$w(x)>0$ for all $x \in \mathscr{R}$ ，w^{\prime} is continuous on \mathscr{A} ，and $\lim \left[x^{n} w(x)\right]=$ $\lim \left[x^{n} w^{\prime}(x)\right]=0$ as $|x| \rightarrow \infty, n=1,2, \ldots$ ．All norms considered in this paper are sup norms on \mathscr{R}（i．e．，$\|f\|=\sup \{|f(x)|: x \in: ⿻ ⿱ ⺈ 口 ⺆\} ;$ ）．For each $n=1,2, \ldots$ ， define

$$
\lambda_{n}=\sup _{p \in, \psi_{n}^{*}} \frac{\left\|w p^{\prime}\right\|}{\|w p\|} \quad \text { and } \quad \mu_{n}=\sup _{p \in \mathscr{P}_{n}^{*}} \frac{\left\|(w p)^{\prime}\right\|}{\|w p\|} .
$$

By standard arguments it can be shown that λ_{n} and μ_{n} are finite and that there exist polynomials $p, q \in \mathscr{P}_{n}^{*}$ for which $\left\|u p^{\prime}\right\| /\|u p\|=i_{n}$ and $\left\|(w q)^{\prime}\right\| /\|w q\|=\mu_{n}$ ．We will refer to such polynomials p or q as extremal polynomials for λ_{n} or μ_{n} ，respectively．Clearly the following inequalities of Markov type hold for all $p \in \mathscr{P}_{n}$ ：

$$
\left\|w p^{\prime}\right\| \leqslant \lambda_{n}\|w p\| \quad \text { and } \quad\left\|(w p)^{\prime}\right\| \leqslant \mu_{n}\|w p\| .
$$

Moreover λ_{n} and μ_{n} are the best possible constants in these inequalities． Estimates of i_{n} and μ_{n} have been determined for various special weight functions（cf．［3，6，7］）．

We also introduce the monic polynomials，T_{n} ，of exact degree n ，which are extremal in the sense that $\left\|w T_{n}\right\|=\inf \left\{\left\|w(x)\left[x^{n}-q(x)\right]\right\|: q \in \not \mathscr{P}_{n} \quad 1\right\}$ Since $\left\{x^{k} \mathfrak{w}(x): k=0,1, \ldots, n-1\right\}$ is a Haar system on \mathscr{R} ，it is well known （cf．［1］）that T_{n} is uniquely characterized by the fact that $w T_{n}$ has an alternant of size $n+1$ ．（An alternant of size N for a function，f ，is a set
of N points, $x_{1}<\cdots<x_{N}$, such that $\left|f\left(x_{k}\right)\right|=\|f\|, k=1, \ldots . N$ and $f\left(x_{k+1}\right)=-f\left(x_{k}\right), k=1, \ldots, N-1$. A maximal alternant for f is an alternant for f whose size is as large as possible.) It is known [4] that T_{n} is also extremal in the sense that among all the functions, $w p, p \in \mathscr{P}_{n}^{*}$, the one with the largest (or smallest) e-point is $w T_{n}$. (An e-point of a function, f, is a point, x_{0}, such that $\left|f\left(x_{0}\right)\right|=\|f\|$.) In other words, if a_{n} and b_{n} denote the smallest an largest e-points of $w T_{n}$ then for any $p \in \mathscr{P}_{n},\|w p\|=$ $\max \left\{|w(x) p(x)|: a_{n} \leqslant x \leqslant b_{n}\right\}$. It is clear that $i_{n}, \mu_{n}, T_{n}, a_{n}$, and b_{n} depend on the weight function, w, but for simplicity our notations will not indicate this dependency.

The purpose of this paper is to prove
Theorem 1. Let $w \in W^{\prime}$ and suppose $p \in \mathscr{P}_{n}^{*}, n \geqslant 2$, is any extremal for μ_{n}. Then
(i) A maximal alternam for $u p$ is of size n or $n+1$.
(ii) If w^{\prime} / w is decreasing on , then there is exactly one maximal alternant for wp. Moreover if this maximal alternant, $x_{1}<\cdots<x_{n}$, is of size n (i.e., if $p \neq T_{n}$) then $(w \omega)^{\prime}\left(t_{0}\right)=0$, where $\omega(x)=\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$ and t_{0} is any e-point of $(w p)^{\prime}$.

Theorem 2. Let $w \in \mathscr{W}^{\prime}$ and suppose $p \in \mathscr{P}_{n}^{*}$ is any extremal for λ_{n}.
(i) If $n=1$ then $p=T_{1}$.
(ii) If $n \geqslant 2$ then a maximal alternant for $w p$ is of size n or $n+1$.
(iii) If w^{\prime} / w is decreasing on then there is exactly one maximal alternant for wp . Moreover if this maximal alternant, $x_{1}<\cdots<x_{n}$, is of size n (i.e., if $p \neq T_{n}$) then $\omega^{\prime}\left(t_{0}\right)=0$, where $\omega(x)=\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$ and t_{0} is any e-point of ' $w p^{\prime}$ '.

Theorem 3. If $w(x)=\exp \left(-x^{2}\right)$ and $p \in \mathscr{P}_{n}^{*}$ is any extremal for μ_{n}, $n \geqslant 1$, then $p=T_{n}$, or $p=T_{n}$, where $T_{0}:=1$.

These theorems will be proved in Section 3, but first we need some preliminary results.

2. Lemmas

Lemma 1. Suppose:
(i) $f \neq 0$ and g are real functions continuous on $[a, b]$,
(ii) $M=\max _{a \leqslant x \leqslant h}|f(x)|$ and $\mathscr{E}=\{x \in[a, b]:|f(x)|=M\}$,
(iii) there exists a set $\mathscr{A} \supset \mathscr{E}$ such that \mathscr{A} is open relative to $[a, b]$ and $f(x) g(x) \geqslant 0$ for each $x \in \mathcal{A}$.

Then for sufficiently small positive $\varepsilon, \max _{a \leqslant x \leqslant h}|f(x)-\varepsilon g(x)| \leqslant M$.
It should be noted that Lemma 1 is a slight variation of a more standard result which states that the inequality in the conclusion is strict if, instead of (iii), it is assumed that $f(x) g(x)>0$ for each $x \in \mathscr{E}$. The proof of this lemma is routine and will therefore be omitted.

Lemma 2. Suppose:
(i) x_{1}, \ldots, x_{n} are n distinct real numbers,
(ii) y_{1}, \ldots, y_{n+1} are real numbers (not necessarily distinct),
(iii) $L: \mathscr{P}_{n} \rightarrow \mathscr{A}$ is a linear functional,
(iv) $\omega(x)=\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$ and $L \omega \neq 0$.

Then there exists a unique polynomial, $q \in \mathscr{P}_{n}$, such that $q\left(x_{k}\right)=y_{k}$, $k=1, \ldots, n$ and $L q=r_{n+1}$.

Proof. If $q(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$ then $L q=c_{0}(L 1)+c_{1}(L x)+$ $\cdots+c_{n}\left(L x^{n}\right)$, where $L x^{k}$ denotes the real number obtained by letting L act on the monomial, x^{k}. Therefore the coefficients, c_{k}, must satisfy the following $(n+1) \times(n+1)$ linear system of equations.

$$
\begin{align*}
& c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2}+\cdots+c_{n} x_{1}^{n}=y_{1} \\
& \vdots \vdots \tag{2.1}\\
& c_{0}+c_{1} x_{n}+c_{2} x_{n}^{2}+\cdots+c_{n} x_{n}^{n}=y_{n} \\
& c_{0}(L 1)+c_{1}(L x)+c_{2}\left(L x^{2}\right)+\cdots+c_{n}\left(L x^{n}\right)=y_{n+1}
\end{align*}
$$

In order to show that this system is solvable we first consider the function, f. defined by

$$
f(x)=\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & & & & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n} \\
1 & x & x^{2} & \cdots & x^{n}
\end{array}\right|
$$

Expanding this determinant we obtain that $f(x)=A_{0}+A_{1} x+\cdots+A_{n} \cdot x^{\prime \prime}$, where A_{k} is the cofactor of the entry, x^{k}, in the last row. In particular, A_{n} is the Vandermonde detrminant for the points x_{1}, \ldots, x_{n}, and so $A_{n} \neq 0$. Since $f \in \mathscr{P}_{n}$ and f has zeros at x_{1}, \ldots, x_{n}, we obtain that $f(x)=A_{n} \omega(x)$. It follows that $A_{n}(L \omega)=L f=A_{0}(L 1)+A_{1}(L x)+\cdots+A_{n}\left(L x^{n}\right)$. This last sum is the expansion by cofactors of the last row for the determinant of the coefficient matrix in (2.1). Therefore (2.1) is uniquely solvable since $L \omega \neq 0$.

Lemma 3. Let $w \in \mathscr{W}^{\prime}$ and suppose $p \in \mathscr{P}_{n}^{*}$ is extremal for $\mu_{n}, n \geqslant 1$. If $w p$ has exactly n e-points, $x_{1}<\cdots<x_{n}$, and $\omega(x)=\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$ then $\left(w^{\prime} \omega\right)^{\prime}\left(t_{0}\right)=0$ whenever t_{0} is an e-point of $(w p)^{\prime}$.

Proof. Suppose to the contrary that (wp)' has an e-point, t_{0}, such that $(w w)^{\prime}\left(t_{0}\right) \neq 0$. Applying Lemma 2 with $L f:=(w f)^{\prime}\left(t_{0}\right)$, we obtain a polynomial, $q \in \mathscr{P}_{n}, \quad$ such that $q\left(x_{k}\right)=\operatorname{sgn}\left[p\left(x_{k}\right)\right], \quad 1 \leqslant k \leqslant n, \quad$ and $(w q)^{\prime}\left(t_{0}\right)=-\operatorname{sgn}\left[(w p)^{\prime}\left(t_{0}\right)\right]$. For sufficiently small $:>0,\|w(p-\varepsilon q)\|<$ $\left\|w_{p}\right\|$ (see remark after Lemma 1). Furthermore, $\left\|[w(p-\varepsilon q)]^{\prime}\right\| \geqslant$ $\left|(w p)^{\prime}\left(t_{0}\right)-a(w q)^{\prime}\left(t_{0}\right)\right|>\left|(w p)^{\prime}\left(t_{0}\right)\right|=\|(w p)^{\prime} \mid$. Therefore the ratio. $\left|(w p)^{\prime}\right| /|u p|$, would become larger if p were replaced by $c(p-\varepsilon q)$ for any $c \in \mathscr{A}, c \neq 0$. This would contradict the fact that p is extremal for μ_{n}.

Lemma 4. Let $w \in \mathscr{H}$ and suppose $p \in \mathscr{P}_{n}^{*}$ is extremal for $\lambda_{n}, n \geqslant 1$. If wp has exactly n e-points, $x_{1}<\cdots<x_{n}$, and $o(x)=\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$ then $\left(^{\prime}\left(t_{0}\right)=0\right.$ whenever t_{0} is an e-point of w p^{\prime}.

Proof. Suppose to the contrary that w p^{\prime} has an ϵ^{\prime}-point, t_{0}. such that $\omega^{\prime}\left(t_{0}\right) \neq 0$. Applying Lemma 2 with $L f:=f^{\prime}\left(t_{0}\right)$, and arguing in a manner similar to the proof of Lemma 3, we would obtain a polynomial, $q \in \mathscr{P _ { n }}$, such that for sufficiently small $;>0, \quad\left\|w(p-i q)^{\prime}\right\| /\|w(p-i q)\|>$ $\left\|w p^{\prime} \mid /\right\| w p \|$. This would contradict the fact that p is extremal for i_{n}.

Lemma 5. Suppose $W \in W$ and $W^{\prime} w$ is decreasing on R. Also suppose $p \in \mathscr{P}_{n}$ has n distinct real zeros. Then there are exactly $n+1$ distinct real numbers, where (up)' vanishes, and so wp can have at most $n+1$ e-points. Moreover if up does have $n+1$ e-points then these e-points form an alternant for $u p$ (i.e., $\left.p=c T_{n}, c \neq 0\right)$.

Proof. Write $p(x)=c\left(x-z_{1}\right) \cdots\left(x-z_{n}\right)$, where $z_{1}<\cdots<z_{n}$. The zero set of (wp $)^{\prime}$ is the solution set of the equation.

$$
\begin{equation*}
\frac{w^{\prime}(x)}{w(x)}=\sum_{k=1}^{n} \frac{1}{z_{k}-x} . \tag{2.2}
\end{equation*}
$$

The argument that follows is easily motivated by considering the graph of the function, h, where $h(x)$ is the right side of (2.2). Note that h is continuous and increases from $-x$ to x on each interval, $\left(z_{k}, z_{k+1}\right)$, $k=1, \ldots, n-1$. So (2.2) has one solution in each of these intervals. Also note that h is continuous on the interval, $\left(-x, z_{1}\right)$. Furthermore h maps this interval onto ($0, \infty$). Therefore (2.2) must have a single solution in $\left(-\infty, z_{1}\right)$ unless $w^{\prime}(x)<0$ for all $x \in\left(-x, z_{1}\right)$. This last possibility is ruled out since $w(x) \rightarrow 0$ as $x \rightarrow-x$. A similar argument shows that (2.2) also has a single solution in the interval, $\left(z_{n}, \infty\right)$. Thus we have shown that the solution set of (2.2) contains exactly $n+1$ points. Now suppose that each
of these solutions, $x_{1}<\cdots<x_{n+1}$, is an e-point of $u p$. If these e-points did not form an alternant for $w p$ then $(w p)\left(x_{k}, 1\right)=(w p)\left(x_{k}\right)$ for some k, $1 \leqslant k \leqslant n$. Therefore ($w p)^{\prime}$ would have a zero in $\left(x_{k}, x_{k+1}\right.$). However, since x_{1}, \ldots, x_{n+1} are zeros of (wp)', this would imply that (wp)' vanished at more than $n+1$ points.

3. Proofs of Thforfms

Proof of Theorem 1. Let $w \in \mathscr{W}$ and suppose $p \in \mathscr{P}_{n}^{*}$ is extremal for μ_{n}, $n \geqslant 2$. Let $a=a_{n}$ and $b=b_{n}$ so that for all $q \in \mathscr{P}_{n},\|w q\|=\max \{|n(x) q(x)|$: $a \leqslant x \leqslant h\}$. Let t_{0} be any e-point of $(w p)^{\prime}$ and let $h(x)=\left(x-t_{0}\right)^{2}$. Note that t_{0} cannot be an e-point of $w p$ and hence $h(x)>0$ whenever x is an e-point of wp. We first show that wp must have both $(+)$ points and $(-)$ points. (An ε-point, x_{0}, of a function, f, is designated a $(+$) point or a $(-$) point according as $f\left(x_{0}\right)=\|f\|$ or $f\left(x_{0}\right)=-\|f\|$.) To see this suppose that up had only $(+)$ points. Then for sufficiently small $\varepsilon>0,\|w(p-\varepsilon h)\|<\|w p\|$. Moreover, $\left\|[w(p-\varepsilon h)]^{\prime}\right\| \geqslant\left|(\omega p)^{\prime}\left(t_{0}\right)-\varepsilon(w h)^{\prime}\left(t_{0}\right)\right|=\left|(w p)^{\prime}\left(t_{0}\right)\right|=\|(w p)^{\prime} \mid$. Therefore the ratio, $\left\|(w p)^{\prime}\right\| /\|w p\|$, would become larger if p were replaced by $c(p-c h)$ for any $c \in \mathscr{A}, c \neq 0$. However, this would contradict the fact that p is extremal for μ_{n}. Therefore $u p$ must have both $(+)$ points and $(-)$ points. We assume that the smallest e-point of $w p$ is a $(+)$ point. (If this were not the case the following argument would be modified in an obvious way.) By following the standard proof of the Tschebyscheff Equioscillation Theorem (cf. [2] or [5]) we can choose a finite number of points, $t_{1}<\cdots<t_{m}$, in (a, b), none of which are e-points of $w p$. so that:
$\left[u, t_{1}\right]$ contains e-points of wp all of which are $(+)$ points,
$\left[t_{1}, t_{2}\right]$ contains e-points of wp all of which are $(-)$ points,
$\left[t_{m}, b\right]$ contains c-points of up all of which are $(+)$ points or $(-)$ points according as m is even or odd.

Since a maximal alternant for $u p$ is clearly of size $m+1$, we need to show that $m+1 \geqslant n$. Let $g(x)=\left(t_{1}-x\right) \cdots\left(t_{m}-x\right) h(x)$. Observe that $p(x) g(x)>0$ whenever x is an e-point of $w p$. Hence for sufficiently small $\quad \varepsilon>0, \quad\|w(p-\varepsilon g)\|<\|w p\|$. Moreover, $\quad\left\|[w(p-\varepsilon g)]^{\prime}\right\| \geqslant$ $\left|(w p)^{\prime}\left(t_{0}\right)-\varepsilon(w g)^{\prime}\left(t_{0}\right)\right|=\left|(w p)^{\prime}\left(t_{0}\right)\right|=\left\|(w p)^{\prime}\right\|$. As before this would contradict the extremal nature of p unless $g \notin \mathscr{I}_{n}$. Therefore $\operatorname{deg}(g)=$ $m+2 \geqslant n+1$. This establishes (i). To prove (ii) we first note that, because of (i), there are only three cases to consider: (1) $\operatorname{deg}(p)=n-1$ and a maximal alternant for $w p$ is of size n (i.e., $p=T_{n, 1}$), (2) $\operatorname{deg}(p)=n$ and a
maximal alternant for $w p$ is of size $n+1$ (i.e., $p=T_{n}$), (3) $\operatorname{deg}(p)=n$ and a maximal alternant for $w p$ is of size n. In the first two cases it follows immediately from Lemma 5 that a maximal alternant for $w p$ consists of all e-points of $w p$, and hence is unique. In the third case p has at least $n-1$ distinct real zeros, z_{1}, \ldots, z_{n}. Since p is real there is one more real zero, z_{n}. Moreover if z_{n} were not distinct from z_{1}, \ldots, z_{n}, then $w p$ would change sign at only $n-2$ places and so a maximal alternant would be of size $\leqslant n-1$. Therefore p has n distinct real zeros. Again Lemma 5 implies that the n points in a maximal alternant for $w p$ are the only e-points of $w p$, and hence this maximal alternant is unique. The remainder of (ii) follows immediately from Lemma 3.

Proof of Theorem 2. Let $w \in W$ and suppose $p \in \mathscr{P}_{n}^{*}$ is extremal for λ_{n}, $n \geqslant 1$. Suppose $w p$ had only $(+)$ points. Then it is easy to see that the ratio, $\left\|w p^{\prime}\right\| /\|w p\|$, would become larger if p were replaced by $p-\varepsilon$ for some sufficiently small $\varepsilon>0$. Therefore $w p$ must have both $(+)$ points and $(-)$ points. When $n=1$ this implies that $p=T_{1}$. We assume hereon that $n \geqslant 2$. Let $a, b, t_{1}, \ldots, t_{m}, g$, and h be as described in the proof of Theorem 1. except that in the definition of $h(x)$ we choose t_{0} to be an e-point of $w p^{\prime}$. We also choose the t_{i} 's so that $t_{0} \notin\left\{t_{1}, \ldots, t_{m}\right\}$. Clearly $p(x) g(x) \geqslant 0$ whenever x is an e-point of $w p$ (strict inequality might not hold since t_{0} could be an e-point of $w p$). It is also casy to see that $p(x) g(x) \geqslant 0$ when x is in a sufficiently small neighborhood of any e-point of $w p$. Therefore, by Lemma 1, there exists $\varepsilon>0$ so that $\|n(p-\varepsilon g)\| \leqslant\|w p\|$. Furthermore, $\| \mathfrak{w}(p-\varepsilon g)^{\prime}|\geqslant| w\left(t_{0}\right)\left[p^{\prime}\left(t_{0}\right)-\varepsilon g^{\prime}\left(t_{0}\right]\left|=\left|w\left(t_{0}\right) p^{\prime}\left(t_{0}\right)\right|=\left\|w p^{\prime}\right\|\right.\right.$. The inequality in this chain can be made strict if t_{0} is not an e-point of $m(p-\varepsilon g)^{\prime}$. That this is indeed the case is easily seen by noting that the derivative of $n(p-i g)^{\prime}$, evaluated at t_{0}, is equal to $-n\left(t_{0}\right) g^{\prime \prime}\left(t_{0}\right) \neq 0$. Again the extremal nature of p requires that $\operatorname{deg}(g)=m+2 \geqslant n+1$. This establishes (i). The proof of (ii) can be obtained as in the proof of Theorem 1, except that Lemma 4 is used instead of Lemma 3.

Proof of Theorem 3. Let $w(x)=\operatorname{cxp}\left(-x^{2}\right)$ and suppose $p \in P_{n}^{*}$ is extremal for $\mu_{n}, n \geqslant 1$. First note that either $\operatorname{deg}(p)=n-1$ or $\operatorname{deg}(p)=n$, and if $\operatorname{deg}(p)=n-1$ then $p=T_{n}$ i. If $n=1$ these statements are trivial and if $n \geqslant 2$ they follow from (i) of Theorem 1. From hereon we assume that $n \geqslant 1$ and $\operatorname{deg}(p)=n$. It remains to be shown that under these conditions, $p=T_{n}$. We begin by noting that p has n distinct real zeros. For $n=1$ this is clear and for $n \geqslant 2$ it was established in the proof of Theorem 1, part (ii). By Lemma 5, (wp $)^{\prime}$ vanishes at exactly $n+1$ points, $x_{1}<\cdots<x_{n+1}$, and by (i) of Theorem 1, at least n of these are e-points of $w p$. We now claim that all the points, x_{1}, \ldots, x_{n+1}, are e-points of $w p$. To see this suppose, to the contrary, that $w p$ had only $n e$-points. Let ω be the monic polynomial of degree n whose zeros are at the e-points
of $w p$, and let $x_{m}, 1 \leqslant m \leqslant n+1$, denote that zero of $(w p)^{\prime}$ which is not an e-point of $w p$. Since $(w p)^{\prime}(x)=w^{\prime}(x)\left[p^{\prime}(x)-2 x p(x)\right]$, it follows that $2 x p(x)-p^{\prime}(x)=2\left(x-x_{1}\right) \cdots\left(x-x_{n+1}\right)=2\left(x-x_{m}\right) \omega(x)$. Therefore $(w \omega)(x)=(w p)^{\prime}(x) / 2\left(x_{m}-x\right)$ and

$$
\left(w^{\prime} \omega\right)^{\prime}(x)=\frac{\left(x_{m}-x\right)(w p)^{\prime \prime}(x)+(w p)^{\prime}(x)}{2\left(x_{m}-x\right)^{2}} .
$$

Clearly if t_{0} is an e-point of $(w p)^{\prime}$ then $(w \omega)^{\prime}\left(t_{0}\right)=(w p)^{\prime}\left(t_{0}\right) / 2\left(x_{m}-t_{0}\right)^{2} \neq 0$, a result which contradicts Lemma 3. Therefore all of the points, x_{1}, \ldots, x_{n+1}, must be e-points of $w p$. By Lemma 5 , these e-points are an alternate for $w p$, from which it follows that $p=T_{n}$.

4. Remarks

It seems likely that the conclusion of Theorem 3 could be improved by showing that $T_{n}{ }_{1}$ cannot be extremal for μ_{n}. This would be equivalent to showing that $\mu_{1}<\mu_{2}<\cdots$, or, more directly, by showing that $\left\|\left(w T_{n \quad 1}\right)^{\prime}\right\| /\left\|w T_{n} \quad\right\|<\left\|\left(w T_{n}\right)^{\prime}\right\| /\left\|w T_{n}\right\|, n \geqslant 1$. This latter inequality can be confirmed by direct computation for $n=1,2$. For this purpose we note that $T_{0}(x)=1, T_{1}(x)=x$, and $T_{2}(x)=x^{2}-a$ where a is that number such that $a[\exp (a+1)]=1$.

It would also be of interest to find other weights for which T_{n} is the extremal polynomial for either μ_{n} or λ_{n}.

Reffrences

1. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
2. P. J. Davis, "Interpolation and Approximation," Blaisdell, New York, 1965.
3. G. Freud, On an inequality of Markov type, Sotiet Math. Dokl. 12 (1971), 570-573.
4. H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 203-234.
5. I. P. Natanson, "Conctructive Function Theory," Vol. I, Ungar, New York, 1964.
6. R. A. Zalik, Inequalities for weighted polynomials, J. Approx. Theory 37 (1983), 137-146.
7. R. A. Zalik, Some weighted polynomial inequalities, J. Approx. Theory 41 (1984), 3950.
